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ObjectivesObjectives

 Main: To introduce to the workshop participants 
the computational aspects of social network 
analysis.

 Specific:

 To describe the computational data structures of 
social networks

 To discuss some quantitative metrics of social 
networks

 To introduce a free software system for 
social network analysis
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Pajek*

*Batagelj V and Mrvar A. 2003. Pajek - Analysis and Visualization of Large Networks. In Graph Drawing Software, 
Springer pp. 77-103,
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Discussion adopted from Hanneman RA and Riddle M.  2005.  Introduction to Social Network Methods.  
Riverside, CA: University of California, Riverside.
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Let us just 
remove the
arrows for

clarity.
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 Visual: Graphs and Sociograms*

 Actors, Entities, Nodes, Vertices

 Relations, Ties, Links, Edges, Arcs

 Example 3** “donated funds”

Discussion adopted from Hanneman RA and Riddle M.  2005.  Introduction to Social Network Methods.  
Riverside, CA: University of California, Riverside.
The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.

Rody Leni

Leila Ronnie
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 Visual: Graphs and Sociograms*

 Actors, Entities, Nodes, Vertices

 Relations, Ties, Links, Edges, Arcs

 Example 1 “perception of close friendship”
 Directed network

Discussion adopted from Hanneman RA and Riddle M.  2005.  Introduction to Social Network Methods.  
Riverside, CA: University of California, Riverside.
The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.
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 Visual: Graphs and Sociograms*

 Actors, Entities, Nodes, Vertices

 Relations, Ties, Links, Edges, Arcs

 Example 1 “perception of close friendship”
 Directed network

 Example 2 “spouse – reciprocated relations”
 Undirected network

 Example 3 “donated funds”
 Directed, weighted network

Discussion adopted from Hanneman RA and Riddle M.  2005.  Introduction to Social Network Methods.  
Riverside, CA: University of California, Riverside.
The names used in this example were intentionally made factual. Any similarity to fiction is just a result of probability.
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How to representHow to represent
social network data?social network data?
 Matrices

 Adjacency Matrix, A
where A

j,k
 = 1 if  entity j has a relation with entity k,

otherwise A
j,k

 = 0.

 Example, undirected network

A = 

Rody Leni Ronnie Leila

Rody

Leni

Ronnie

Leila

Rody Leni

Leila Ronnie

1 0 00

0 0 01

0 0 10

0 1 00



  

How to representHow to represent
social network data?social network data?
 Matrices

 Weighted Adjacency Matrix, W
where W

j,k
 = w if  entity j has a weighted relation w 

with entity k, otherwise W
j,k

 = 0.

 Example, weighted directed network

W = 

Rody Leni Ronnie Leila

Rody

Leni

Ronnie

Leila

50 20 00

0 0 050

5 0 15

0 100 00

Rody Leni

Leila Ronnie

50

50

5

1

100

20

5



  

How to representHow to represent
social network data?social network data?
 Other Matrices*

 Degree matrix, D

 Normalized adjacency matrix, N

 Laplacian matrix, L

 Normalized Laplacian matrix, Z

 Stochastic adjacency matrix, P

 Signless Laplacian, K

 and many more

Unfortunately,
they are 
“boring”

things to 
talk about.

Brouwer AE and Haemers WH. 2011. Spectra of Graphs. Springer.*
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social network data?social network data?
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 List of vertices, V

 List of edges, E

 Example 1: “perception of close friendship”

 V = { Rody, Leni, Ronnie, Leila }

 E = { (Rody, Leni), (Rody, Ronnie),  (Leni, Ronnie),

Efficient representation 
for computation

(Ronnie, Rody), (Ronnie, Leni),
(Leila, Ronnie) }



  

How to representHow to represent
social network data?social network data?
 Lists

 List of vertices, V

 List of edges, E

 Example 2: “spouse – reciprocated relations”

 V = { Rody, Leni, Ronnie, Leila }

 E = { (Rody, Leni), (Rody, Ronnie) }

Efficient representation 
for computation



  

How to representHow to represent
social network data?social network data?
 Lists

 List of vertices, V

 List of edges, E

 Example 2: “donated funds”

 V = { Rody, Leni, Ronnie, Leila }

 E = { (Rody, Leni, 50), (Rody, Ronnie, 20),

Efficient representation 
for computation

(Leni, Rody, 50), (Ronnie, Rody, 5),
(Ronnie, Lenie, 5), (Ronnie, Leila, 1),
(Lenie, Ronnie, 100) }
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Network MetricsNetwork Metrics

 Basic Metrics

 Network size, n – Total number of nodes

 Network volume, m – Total number of edges

 Network weight, w – Sum of absolute edge 
weights

 Average degree (or Network density), d = 2m/n
Rody Leni

Leila Ronnie

n = 4
m = 6
w = 6
d = 3



  

Network MetricsNetwork Metrics

 Network centralities*

 Which nodes are more “central” than others?

 Central nodes are those in the “thick of things” or 
“focal” among the nodes*.

A

B

C

D

E

Here, Node A can be considered central
because it:
 has more ties;
 can reach others through one edge, 

while others need two edges;
 can control the flow of data

to other nodes.

Freeman LC. 1978. Centrality in social networks: Conceptual clarification. Social Networks 1, 215-239.*



  

Network MetricsNetwork Metrics

 Network centralities

 Degree centrality – Number of links a node has
 Concept 1: For undirected network, immediate risk of a 

node for catching whatever is flowing in the network 
(gossip, information, virus, etc)

  Concept 2: For directed network, in-degree (number of 
edges that point towards the node, i.e., popularity) and 
out-degree (number of edges the point away from the 
node, i.e., gregariousness)

Rody Leni

Leila Ronnie

Who’s
popular?
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 Network centralities

 Closeness centrality* – Inverse of farness, which 
is the sum of distances to all other nodes.

 Computational idea: Compute the shortest distance** 
between all pairs of nodes

 Distance is the number of (directed) paths to take to 
reach another node from a given node.

Rody Leni

Leila Ronnie

Who’s
close?

Freeman LC. 1978. Centrality in social networks: Conceptual clarification. Social Networks 1, 215-239.
Dijkstra EW. 1959. A note on two problems in connexion with graphs. Numerische Mathematik 1, 269-271.

*
**



  

Network MetricsNetwork Metrics

 Network centralities

 Betweenness centrality* – The extent for which a 
node is a part of transactions among other nodes.

 In pinoy’s red tape parlance, these are the fixers, go-
betweeners, or tulay.

 Intuitive computation is via Dijkstra’s algorithm but a 
faster** one exists.

Rody Leni

Leila Ronnie

Who’s the most
in between?

Freeman LC. 1978. Centrality in social networks: Conceptual clarification. Social Networks 1, 215-239.
Brandes U. 2001. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25, 163-177.

*
**
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 Characterizing Nodes

 Hubs and Authorities* (iterative definition)
 Authorities are nodes that are sources of authoritative 

information. A good authority is one that is pointed to by 
many good hubs.

 Hubs are nodes that are sources of authorities. A good 
hub is one that points to many good authorities.

 Can only be performed on a directed network

Manning CD, Raghavan P and Schütze H. 2008. Introduction to Information Retrieval. Cambridge University Press.*
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 Workshop #1

 Install Pajek into your PC Compatibles (Intel-based 
chipset running MS-Windows OS)

 Prepare your data set
 Using any word processor that can save an ASCII file, 

format the data file as follows:
 Line 1: *Vertices <number of vertices, n>

 Line 2 to Line n+1: <unique integer> “<name of vertex>”



  

Network MetricsNetwork Metrics

 Workshop #1

 Install Pajek into your PC Compatibles (Intel-based 
chipset running MS-Windows OS)

 Prepare your data set
 Using any word processor that can save an ASCII file, 

format the data file as follows:
 Line 1: *Vertices <number of vertices, n>

 Line 2 to Line n+1: <unique integer> “<name of vertex>”
 Line n+2:

 If Undirected: *Edges

 If Directed: *Arcs
 Line n+3 and onward: <integer> <integer>*



  

Network MetricsNetwork Metrics

 Workshop #1: Example data set: perception of 
close friendship

 Line 1:  *Vertices 4

 Line 2:  1 “Rody”

 Line 3:  2 “Leni”

 Line 4:  3 “Ronnie”

 Line 5:  4 “Leila”

 Line 6:  *Arcs

 Line 7:  1 2

 Line 8:  1 3

 Line 9:  2 3

 Line 10: 3 1

 Line 11: 3 2

 Line 12: 4 3*

Rody Leni

Leila Ronnie



  

Network MetricsNetwork Metrics

 Workshop #1: Example data set: perception of 
close friendship

 Line 1:  *Vertices 4

 Line 2:  1 “Rody”   x_fact 1 y_fact 1 ic Blue

 Line 3:  2 “Leni”   x_fact 1 y_fact 1 ic Red

 Line 4:  3 “Ronnie” x_fact 1 y_fact 1 ic Blue

 Line 5:  4 “Leila”  x_fact 1 y_fact 1 ic Red

 Line 6:  *Arcs

 Line 7:  1 2

 Line 8:  1 3

 Line 9:  2 3

 Line 10: 3 1

 Line 11: 3 2

 Line 12: 4 3*

Add these to 
Lines 2 through 5, 
respectively



  

Network MetricsNetwork Metrics

 Workshop #1: Example data set: perception of 
close friendship

 Draw the Network and explore the drawing 
options

 Compute for the following centralities:

 Degree
 Closeness
 Betweenness

 Identify the Hubs and Authorities

*
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 Workshop #2: Scientific Collaboration Network

 Copy the Pajek dataset for the Collaboration 
Network of Filipino Computer Scientists*

 Inspect, using your word or text processor 
(preferably notepad or better), if the data file follows 
the Pajek input format

 542 nodes/authors
 969 edges/co-authorship

Pabico JP. 2010. Authorship patterns in computer science research in the Philippines. Philippine Computing 
Journal 5(1):1-13

*
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 Workshop #2: Scientific Collaboration Network

 Started out as a paper-author bipartite network with 
542 authors and 326 papers

Pabico JP. 2010. Authorship patterns in computer science research in the Philippines. Philippine Computing 
Journal 5(1):1-13

*
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 Workshop #2: Scientific Collaboration Network

 Idea:

Pabico JP. 2010. Authorship patterns in computer science research in the Philippines. Philippine Computing 
Journal 5(1):1-13

*
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 Workshop #2: Scientific Collaboration Network

 Idea:

Pabico JP. 2010. Authorship patterns in computer science research in the Philippines. Philippine Computing 
Journal 5(1):1-13
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Network MetricsNetwork Metrics

 Workshop #2: Scientific Collaboration Network

 Load the dataset

 Draw the network using various drawing techniques

 Compute for the centralities
 Degree
 Closeness
 Betweenness

 Characterize the nodes
 Hubs and authorities
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 Workshop #3: Sex Network*

 Load the dataset Sex Network
 Vertices: 16,730
 Edges: 50,632

 The data is composed of two types of nodes: 
 Male who are escort service seeker; and 
 Female who are escort service provider.

 Modify the data so that it can be accepted by Pajek
 Can we just use your word/text processor?

Rocha LEC, Liljeros F and Holme P. 2010. Information dynamics shape the sexual networks of Internet-mediated 
prostitution. Proceedings of the National Academy of Sciences of USA 107(13):5706--5711.

*
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 Workshop #3: Sex Network

 Draw the network using various drawing techniques

 Compute for the centralities
 Degree
 Closeness
 Betweenness

 Can we find who are the hubs and the authorities?
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 Workshop #4: Doctors Network*

 241 vertices, 1098 edges

 Draw the network using various drawing techniques

 Compute for the centralities
 Degree
 Closeness
 Betweenness

 Can we find who are the hubs and the authorities?

Coleman J, Katz E and Menzel H. 1957. The diffusion of an innovation among physicians. Sociometry 20(4):253-270.*



  

Questions?Questions?

 Email to <jppabico@uplb.edu.ph> for:

 Questions requiring detailed answers

 Proposals for research collaboration
 Soft computing and machine learning
 HPC/scheduling and dynamic load balancing
 Wireless adhoc networks
 Computer security and forensics
 Information visualization

 http://www.ics.uplb.edu.ph/jppabico


